
BULETINUL
Universităţii Petrol – Gaze din Ploieşti

Vol. LX
No. 1/2008 39 - 48 Seria

Matematică - Informatică - Fizică

Overview of Desktop Grid Systems

Zoran Constantinescu*, Monica Vlădoiu**, Cătălina Negoiţă**

*ZealSoft SRL, str. Tg. Neamţ, nr. 11, Bucureşti
 e-mail: zoran@unde.ro
** Universitatea Petrol-Gaze din Ploieşti, Bd. Bucureşti 39, Ploieşti, Catedra de Informatică
 e-mail: mvladoiu@upg-ploiesti.ro

Abstract

We present here our overview of the most well-known and used desktop grid systems that can be used to
scavenge cycles from idle desktop computers either from a local network or from Internet: SETI@home-
BOINC, distributed.net, PVM, Entropia, and Condor. This overview could be used also as a guide to
choose the most appropriate desktop grid platform to solve a particular problem.

Key words: grid computing, distributed computing, desktop grid systems, overview of desktop grids

Desktop Grids

Grid computing is a model of Distributed Computing (DC) that uses geographically and
administratively disparate resources that are found on the network. These resources may include
processing power, storage capacity, specific data, and other hardware such as input and output
devices. In grid computing, individual users can access computers and data transparently,
without having to consider location, operating system, account administration, and other details.
Moreover, the details are abstracted, and the resources are virtualized. Grid computing seeks to
achieve the secured, controlled and flexible sharing of resources (for example, multiple
computers, software and data) among various dynamically created virtual organizations [2, 4],
which are generally setup for collaborative problem solving and access to grid resources are
limited to those who are part of the project. The creation of an application that can benefit from
Grid computing (faster execution speed, linking of geographically separated resources,
interoperation of software, etc.) typically requires the installation of complex supporting
software and an in-depth knowledge of how this complex supporting software works.

Grid computing systems can be classified into two broad types. The first type are heavy-weight,
feature-rich systems that tend to concern themselves primarily with providing access to large-
scale, intra- and inter-institutional resources such as clusters or multiprocessors. The second
general class of Grid computing systems is the Desktop Grids, in which cycles are scavenged
from idle desktop computers. The typical and most appropriate application for desktop grid
comprises independent tasks (no communication exists amongst tasks) with a high computation
to communication ratio [1].

In a desktop grid system, the execution of an application is orchestrated by a central scheduler
node, which distributes the tasks amongst the worker nodes and awaits workers' results. It is

40 Zoran Constantinescu, Monica Vlădoiu, Cătălina Negoiţă

important to note that an application only finishes when all tasks have been completed. The
main difference in the usage of institutional desktop grids relatively to public ones lies in the
dimension of the application that can be tackled. In fact, while public projects usually embrace
large applications made up of a huge number of tasks, institutional desktop grids, which are
much more limited in resources, are more suited for modestly-sized applications. So, whereas in
public volunteer projects importance is on the number of tasks carried out per time unit
(throughput), users of institutional desktop grids are normally more interested in a fast execution
of their applications, seeking fast turnaround time.

The attractiveness of exploiting desktop grid systems is further reinforced by the fact that costs
are highly distributed: every volunteer supports her resources (hardware, power costs and
internet connections) while the benefited entity provides management infrastructures, namely
network bandwidth, servers and management services, receiving in exchange a massive and
otherwise unaffordable computing power. The usefulness of desktop grid computing is not
limited to major high throughput public computing projects. Many institutions, ranging from
academics to enterprises, hold vast number of desktop machines and could benefit from
exploiting the idle cycles of their local machines. In fact, several studies confirm that CPU
idleness in desktop machines averages 95% [3, 5].

Desktop Grid (DG) has recently received the rapidly growing interest and attraction because of
the success of the most popular examples such as SETI@Home and distributed.net.
SETI@home is one of the most successful projects that use such a model. One of the reasons for
this success is its simplicity in enabling contributors to donate computational resources—when
the computer screensaver is activated the application starts by making a request to a remote
server to download tasks to be processed. Another reason is its support for Windows operating
system, since the majority of the desktop machines around the world run Windows. Based on
the same concept, there are other @home projects: FightAIDS@home, Folding@home,
evolution@home, etc. All of these projects are primarily targeted for applications that can be
expressed as parameter-sweep applications. They have no or lack of support for creating
applications consisting of tasks that need to communicate and coordinate their activities by
exchanging messages among themselves [9].

SETI@home - BOINC

SETI, or the Search for Extraterrestrial Intelligence, is a scientific effort seeking to determine if
there is intelligent life outside Earth. One popular method SETI researchers use is radio SETI,
which involves listening for artificial radio signals coming from other stars. Previous radio SETI
projects have used special-purpose supercomputers, located at the telescope, to do the bulk of
the data analysis. In 1995, a new idea was proposed to do radio SETI using a virtual
supercomputer composed of large numbers of Internet-connected computers [12].

SETI@home, developed at the University of California in Berkley, is a radio SETI project that
lets anyone with a computer and an Internet connection participate. The method they use to do
this is with a screen saver that can go get a chunk of data from a central server over the Internet,
analyze that data, and then report the results back. When the computer is needed back, the
screen saver instantly gets out of the way and only continues its analysis when the computer is
not used anymore. The program that runs on each client computer looks and behaves like a
captivating screen saver. It runs only when the machine is idle, and the user can choose from
several different colorful and dynamic "visualizations" of the SETI process. Some of these
visualizations will look technical, some will look abstract, and some will look decidedly artistic,
as it can be seen in the screenshot from Fig. 1.

 Overview of Desktop Grid Systems 41

The data analysis task can be easily broken up into little pieces that can all be worked on
separately and in parallel. None of the pieces depends on the other pieces, which makes large
deployment of clients and computations very easy over the Internet.

Fig. 1. SETI@home screenshot

SETI@home needs network connection only when transferring data. This occurs only when the
screen saver has finished analyzing the work-unit and wants to send back the results. Each work
unit is sent multiple times to different users in order to make sure that the data is processed
correctly. The system architecture is depicted in Fig. 2.

Fig. 2. SETI@home architecture

While the "screen saver" is running, the client would be processing the quarter-megabyte data
block (work-unit), which would contain 50 seconds within a 20-kilohertz range. The algorithm
examines this data for strong signals or "chirps" while taking Doppler shifting into account.
False alarms would be prevented by tests for terrestrial interference. Once a block was
processed, it would be returned to a centralized SETI@home computer where the results would
be stored and organized. This process, when replicated tens or hundreds of thousands of times,
has the capacity to analyze the data much more closely than before, perhaps noticing subtle
patterns that real-time signal processing missed. The overall results of the search would appear

42 Zoran Constantinescu, Monica Vlădoiu, Cătălina Negoiţă

on the SETI@home web site, making the findings immediately available to the public and to the
participants. SETI@home is the largest public distributed computing project in terms of
computing power: on September 26, 2001 it reached the ZettaFLOP (1021 floating point
operations) mark, a new world record, performing calculations at an average of 71
TeraFLOPs/second. For comparison, the fastest individual computer at that time in the world
was IBM's ASCI White, which runs at 12.3 TeraFLOPs/second. On June 1, 2002, the project
completed over 1 million CPU years of computation.

SETI@home has not been without problems. For all the media attention and public interest,
funding has not been forthcoming. Developing new software to run the distributed system and
to perform the analysis on the client side is a difficult and expensive process. The SETI@home
project has been delayed repeatedly due to lack of corporate sponsorship. "People time", rather
than computer power, has proven to be hard to come by, and in the end it seems that expense -
the very thing that SETI@home and distributed computing are meant to escape - may be a force
as inexorable as gravity. The SETI@home project is for a very specific problem, as described
above. There was no general framework for the system, which can be used by other types of
applications, and it became SETI@home Classic. Then new funding came for the BOINC
project and SETI@home was rewritten for the new framework and it became SETI@home II in
2005. BOINC is open-source software for volunteer computing and desktop grid computing. It
includes the following features: project autonomy, volunteer flexibility: flexible application
framework, security, server performance and scalability, source code availability, support for
large data, multiple participant platforms, open, extensible software architecture, and volunteer
community features. BOINC is designed to support applications that have large computation
requirements, storage requirements, or both. The main requirement of the application is that it
be divisible into a large number (thousands or millions) of jobs that can be done independently.
If the project is going to use volunteered resources, there are additional requirements as public
appeal and low data/compute ratio [8].

distributed.net

A very similar project is the distributed.net project [10]. It takes up challenges and run projects
which require a lot of computing power. Utilizing the combined idle processing cycles of the
members’ computers solves these. The collective-computing projects that have attracted the
most participants have been attempts to decipher encrypted messages. RSA Security (RSA,
2005) a commercial company has posted a number of cryptographic puzzles, with cash prizes
for those who solve them. The company's aim is to test the security of their own products and to
demonstrate the vulnerability of encryption schemes they consider inadequate. The focus of the
distributed.net project is on very few specialized computing challenges. Furthermore, the project
only releases the clients’ binary code and not the server code, making impossible the adaptation
of this to other types of projects.

Typical RSA challenges could either involve factoring, or call for a more direct attack on an
encrypted text. In one challenge the message was encoded with DES, the Data Encryption
Standard, a cipher developed in the 1970s under U.S. government sponsorship. The key that
unlocks a DES message is a binary number of 56 bits (or larger: 64, 72 bits). In general the only
way to crack the code is to try all possible keys, of which there are 256, or about 7 * 1016.
Another RSA challenge also employed a 56-bit key, but with an encryption algorithm called
RC5. Compared with earlier DC projects, the RC5 efforts were not only technically
sophisticated but also reached a new level of promotional and motivational slickness.

For example, they kept statistics on the contributions of individuals and teams, adding an
element of competition between teams, as it can be seen in Fig. 3. The RSA Challenge numbers
are the kind, which are believed to be the hardest to factor; these numbers should be particularly

 Overview of Desktop Grid Systems 43

challenging. These are the kind of numbers used in devising secure RSA cryptosystems. The
challenges are an effort to learn about the actual difficulty of factoring large numbers of the type
used in RSA keys.

Another type of project, which involves a lot of computing power, is the optimal Golomb Ruler
(OGL). Essentially, a Golomb Ruler is a mathematical term given to a set of whole numbers
where no two pairs of numbers have the same difference. An Optimal Golomb Ruler is just like
an everyday ruler, except that the marks are placed so that no two pairs of marks measure the
same distance. OGRs have many uses in the real world, including sensor placements for X-ray
crystallography and radio astronomy. Golomb rulers can also play a significant role in
combinatorics, coding theory and communications. The search for OGRs becomes
exponentially more difficult as the number of marks increases ("NP complete" problem).

Fig. 3. distributed.net statistics screen

Considerations on Parallelism for SETI@home - distributed.net

None of these two systems provide support for parallel application, when communication
between programs running on different computers is necessary during the computation. This
makes difficult to use such systems for our purpose, where more than one desktop computer are
needed to solve a certain problem. Tasks with independent parallelism are suited for this type of
computing. In SETI@home, work unit computations are independent, so participant computers
never have to wait for or communicate with one another [1].

If a computer fails while processing a work unit, the work unit is eventually sent to another
computer. Public-resource computing, with its frequent computer outages and network
disconnections, seems ill-suited to parallel applications that require frequent synchronization
and communication between nodes. However, scheduling mechanisms that find and exploit
groups of LAN-connected machines may eliminate these difficulties [1].

44 Zoran Constantinescu, Monica Vlădoiu, Cătălina Negoiţă

PVM

PVM (Parallel Virtual Machine) is a portable message-passing programming system, designed
to link separate host machines to form a virtual machine, which is a single, manageable
computing resource. The virtual machine can be composed of hosts of varying types. The
general goals of this project are to investigate issues in, and develop solutions for,
heterogeneous concurrent computing. PVM is an integrated set of software tools and libraries
that emulates a general-purpose, flexible, heterogeneous concurrent computing framework on
interconnected computers of varied architecture. The overall objective of the PVM system is to
enable such a collection of computers to be used cooperatively for concurrent or parallel
computation. Applications can be composed of any number of separate processes and are
provided access to PVM through the use of calls to PVM library routines for functions such as
process initiation, message transmission and reception, and synchronization via barriers or
rendezvous. PVM is effective for heterogeneous applications that exploit specific strengths of
individual machines on a network [7].

The PVM system is composed of two parts. The first part is a daemon (called pvmd) that resides
on all the computers making up the virtual machine. This is designed in such a way that any
user with a valid login can install this daemon on a machine. When a user wishes to run a PVM
application, he first creates a virtual machine by starting up PVM. Multiple users can configure
overlapping virtual machines, and each user can execute several PVM applications
simultaneously. The second part of the system is a library of PVM interface routines. It contains
a functionally complete repertoire of primitives that are needed for cooperation between tasks of
an application. This library contains user-callable routines for message passing, spawning
processes, coordinating tasks, and modifying the virtual machine.

The PVM computing model described in Fig. 4 is based on the notion that an application
consists of several tasks. Each task is responsible for a part of the application's computational
workload. Sometimes an application is parallelized along its functions; that is, each task
performs a different function, for example, input, problem setup, solution, output, and display.
This process is often called functional (task) parallelism. A more common method of
parallelizing an application is called data parallelism. In this method all the tasks are the same,
but each one only knows and solves only a small part of the data. This is also referred to as the
SPMD (single-program multiple-data) model of computing. PVM supports either or a mixture
of these methods. Depending on their functions, tasks may be executed in parallel and they may
need to synchronize or exchange data, although this is not always the case.

 Fig. 4. PVM Computing Model

The general paradigm for application programming with PVM is as follows. A user writes one
or more sequential programs in C/C++, or Fortran 77 that contain embedded calls to the PVM

 Overview of Desktop Grid Systems 45

library. Each program corresponds to a task making up the application. These programs are
compiled for each architecture in the host pool, and the resulting object files are placed at a
location accessible from machines in the host pool. To execute an application, a user typically
starts one copy of one task (usually the "master" or "initiating" task) by hand from a machine
within the host pool.

This process subsequently starts other PVM tasks, eventually resulting in a collection of active
tasks that then compute locally and exchange messages with each other to solve the problem.
Note that while the above is a typical scenario, as many tasks as appropriate may be started
manually. Tasks interact through explicit message passing, identifying each other with a system-
assigned, opaque task identifier. PVM support both task- and data-parallelism. An advantage of
the PVM system is that it is quite popular today and has become a de-facto standard for message
passing. There are many algorithms implemented using PVM, and there is a large body of
experience in using it. It is well known and accepted in the academic environment, due to its
easiness of use and the availability of source code from the public domain. However, it is not
very widespread in industry.

Alas, PVM provides only the parallel programming environment and does not offer resource
management. This means that the system could not prevent access of different users to the same
computing resource. Two or more users could share the same CPU without even knowing that.
Such sharing could result in an inefficient use of resources, especially when running a data-
parallel application with uniform computational requirements per task. Further job/resource
scheduling systems are required to provide exclusive access to CPUs in a PVM environment.

Another disadvantage of the PVM system is that the user needs to have 'login' access to each of
the computers involved in a computation. From the user's point of view this is done in a
transparent way, by automatically using remote login (usually Rush or ssh) to start the
application on each computer. There are certain problems with this, which limits a large-scale
deployment of the system in many situations. One is that in a completely heterogeneous
environment, consisting of operating systems with different types of user authentication (e.g.
Unix, Windows and Mac), allowing users' login access to each computer on the network can be
extremely difficult to set up and later maintain it. This could also easily be the cause of a
potential security problem. For this reason, in many real-life situations, users are not allow to
remotely login to the computers in the network, or if so, to only a very few servers. It has also
been found to be difficult to install PVM for recent versions of Windows, making it very hard to
deploy and use in a today's typical large-scale corporate network, where desktop machines
running different operating systems are usually available. So PVM need 'more' heterogeneity
than just Unix systems.

Entropia

DCGrid, developed by the company called Entropia [11] was a PC grid computing platform that
provided high performance computing capabilities by aggregating the unused processing cycles
of networks of existing Windows-based PCs. The system is no longer used due to the fact that
the system was thought in the first place as being commercial. We have chosen to still present it
since it was a major desktop grid system, which has had significant contributions to the field.

Existing proprietary and third party applications could be quickly and easily deployed on the
DCGrid platform using DCGrid's rapid integration features, which allow enterprises to achieve
business objectives faster, with higher throughput, increased precision and more meaningful
results in less time than previously possible. DCGrid solutions enabled new and more difficult
problems to be solved. Unused PC resources are harvested based on user and organization
policies, with settings centrally monitored and managed with a web-based grid management
interface. Work is scheduled to PCs based on application resource requirements, and is

46 Zoran Constantinescu, Monica Vlădoiu, Cătălina Negoiţă

monitored and rescheduled as necessary if there are system disruptions or resource
unavailability. Any native Win32 application could be deployed and executed on the DCGrid
platform, and applications are enabled for the platform at the binary code level.

DCGrid contained an isolation technology, which provides full and unobtrusive protection for
the grid as well as the underlying resources. DCGrid protected the desktop configuration,
programs, and data from corruption by grid application errors as well as the privacy of desktop
users from snooping. The grid application could not accidentally or intentionally access or
modify the PC configuration or data files. Unlike other error-prone approaches, DCGrid
presented a cleanly isolated, corruption-free environment. DCGrid shielded applications,
proprietary data, and resources distributed to the desktop PCs by using encryption and tamper
detection. Proprietary data and research sent out to hundreds of PCs in an enterprise could be
protected from desktop user inspection or malicious corruption. DCGrid automatically
monitored and limited grid work so it does not intrude on the PC user. DCGrid remained
invisible at all times, never demanding inputs or responses from the desktop user, and never
impacting the user's performance.

The approach is to automatically wrap an application in a virtual machine technology (Fig. 5).
When an application program is registered or submitted to the Entropia system, it is
automatically wrapped inside the virtual machine. This isolation is called sandboxing. The
application is contained within a sandbox and is not allowed to modify resources outside the
sandbox. The application is fully unaware of being running within a sandbox, since its
interaction with the OS is automatically controlled by the virtual machine. The virtual machine
intercepts system calls the application makes. This ensures that the virtual machine has
complete control over the applications’ interaction with the operating system and access to the
desktop resources.

Fig. 5 Entropia Sandbox Model

The Entropia system architecture consisted of three layers: physical management, scheduling,
and job management. The physical node management layer, provided basic communication and
naming, security, resource management, and application control. The second layer was resource
scheduling, providing resource matching, scheduling, and fault tolerance. Users could directly
interact with the resource-scheduling layer through the available APIs or alternatively through
the third layer management, which provides management facilities for handling large numbers
of computations and files. Entropia provided a job management system, but existing job
management systems can also be used.

The physical node management layer of the Entropia system managed these and other low-level
reliability issues. The physical node management layer provided naming, communication,
resource management, application control, and security. The resource management services
captured a wealth of node information (e.g., physical memory, CPU, disk size and free space,
software version, data cached) and collected it in the system manager. This layer also provided
basic facilities for process management including file staging, application initiation and
termination, and error reporting. In addition, the physical node management layer ensures node
recovery, terminating runaway and poorly behaving applications.

 Overview of Desktop Grid Systems 47

The security services employed a range of encryption and binary sandboxing technologies to
protect both distributed computing applications and the underlying physical node. Application
communications and data were protected with high-quality cryptographic techniques. A binary
sandbox controlled the operations and resources visible to distributed applications on the
physical nodes in order to protect the software and hardware of the underlying machine. The
binary sandbox also regulated the usage of resources by the distributed computing application.
This ensured that the application did not interfere with the primary users of the system without
requiring a rewrite of the application for good behavior [4].

The resource-scheduling layer of Entropia accepted units of computation from the user or job
management system, matched them to appropriate client resources, and scheduled them for
execution. The resource-scheduling layer adapted to changes in resource status and availability
and to high failure rates. To meet these challenging requirements, the Entropia system supported
multiple instances of heterogeneous schedulers. This layer also provided simple abstractions for
IT administrators, abstractions that automate the majority of admins’ tasks with reasonable
defaults but allow detailed control as desired.

Entropia's three-layer architecture provided a wealth of benefits in system capability, ease of use
by users and IT administrators, and internal implementation. The physical node layer managed
many of the complexities of the communication, security, and management, allowing the layers
above to operate with simpler abstractions. The resource-scheduling layer dealt with unique
challenges of the breadth and diversity of resources but need not deal with a wide range of
lower-level issues. Above the resource-scheduling layer, the job management layer dealt with
mostly conventional job management issues. Finally, the higher-level abstractions presented by
each layer did simplify application development. One disadvantage of the Entropia system was
that it did not support heterogeneous systems. The only platform was Windows that limited the
usability of this system in a research environment.

Condor

Condor, developed at the department of Computer Science, University of Wisconsin, Madison,
is a High Throughput Computing (HTC) environment that can manage very large collections of
distributive owned workstations [6]. This is a computing environment that delivers large
amounts of computational power over a long period of time, usually weeks or months. In
contrast, High Performance Computing (HPC) environments deliver a tremendous amount of
compute power over a short period of time. In a high throughput environment, researchers are
more interested in how many jobs they can complete over a long period of time instead of how
fast an individual job can complete. HTC is more concerned to efficiently harness the use of all
available resources.

The Condor environment is based on a layered architecture that enables it to provide a powerful
and flexible suite of resource management services to sequential and parallel applications.
Condor is a specialized workload management system for compute-intensive jobs. Like other
full-featured batch systems, Condor provides a job queuing mechanism, scheduling policy,
priority scheme, resource monitoring, and resource management. Users submit their serial or
parallel jobs to Condor, Condor places them into a queue, chooses when and where to run the
jobs based upon a policy, carefully monitors their progress, and ultimately informs the user
upon completion.

Condor provides a powerful resource management by match-making resource owners with
resource consumers. This is the cornerstone of a successful HTC environment. Other compute
cluster resource management systems attach properties to the job queues themselves, resulting
in user confusion over which queue to use as well as administrative hassle in constantly adding
and editing queue properties to satisfy user demands. Condor implements ClassAds, which

48 Zoran Constantinescu, Monica Vlădoiu, Cătălina Negoiţă

simplifies the user's submission of jobs. ClassAds work in a fashion similar to the newspaper
classified advertising want-ads. All machines in the Condor pool advertise their resource
properties, both static and dynamic, such as available RAM memory, CPU type, CPU speed,
virtual memory size, physical location, and current load average, in a resource offer ad. A user
specifies a resource request ad when submitting a job. The request defines both the required and
a desired set of properties of the resource to run the job. Condor acts as a broker by matching
and ranking resource offer ads with resource request ads, making certain that all requirements in
both ads are satisfied. During this match-making process, Condor also considers several layers
of priority values: the priority the user assigned to the resource request ad, the priority of the
user which submitted the ad, and desire of machines in the pool to accept certain types of ads
over others.

References

1. C o n s t a n t i n e s c u Z . - A Desktop Grid Computing Approach for Scientific Comp. and
Visualization, PhD Thesis, Norwegian Univ. of Science and Technology, Trondheim, Norway, 2008

2. C u m m i n g s , M . P . - Grid Computing, http://serine.umiacs.umd.edu/research/ grid.php
3. D o m i n g u e s , P . , M a r q u e s , P . , S i l v a , L . - Resource usage of Windows computer

laboratories, in MARQUES, P., Ed., Int. Conf. on Parallel Processing Workshops (ICPP 2005),
Leiria, Portugal, 2005

4. F o s t e r , I . , K e s s e l m a n , C . - The grid: blueprint for a new computing infrastructure,
Boston, Morgan Kaufmann Publishers, 2004

5. H e a p , D . G . - Taurus - A Taxonomy of Actual Utilization of Real UNIX and Windows Servers,
IBM White Paper, 2003

6. L i t z k o w , M . L . , M u t k a , M . W . - Condor - A Hunter of Idle Workstations, Procedeengs
of the 8th International Conference of Distributed Computing Systems (ICDCS1988), 1988

7. S u n d e r a m , V . S . - PVM: a framework for parallel distributed computing, Concurrency:
Practice and Experience, 2, pp. 315-339, 1990

8. * * * - BOINC - open source software for volunteer computing and grid computing,
http://boinc.berkeley.edu/

9. * * * - distributedcomputing.info, http://distributedcomputing.info
10. * * * - distributed.net, http://distributed.net/
11. * * * - Entropia, www.entropia.com
12. * * * - SETI@home, http://setiathome.ssl.berkeley.edu/

Trecerea în revistă a sistemelor desktop grid

Rezumat

Aici trecem în revistă cele mai cunoscute şi utilizate sisteme desktop grid, care pot fi folosite pentru a
fructifica ciclurile idle ale sistemelor de calcul desktop, fie dintr-o reţea locală, fie din Internet:
SETI@home-BOINC, distributed.net, PVM, Entropia, and Condor. Acestă prezentare poate folosi şi ca
un ghid pentru a alege cea mai potrivită platformă desktop grid pentru a rezolva o problemă particulară.

